
1/25

Introduction: The infeasible path problem
Program and machine representation

Program analysis
Finding infeasible paths

Experiments and conclusions

Working around Loops for Infeasible Path
Detection in Binary Programs

J. Ruiz, H. Cassé, M. De Michiel
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Infeasible paths: A major source of pessimism

I Path 1 → 2 → 3 → 4 is semantically
impossible (= infeasible)

I But taken in account in WCET estimation!

I If path is expensive: worsen WCET precision
(+ pessimism)
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Working on binary code

Analyzing binary code is harder :

× Low expressivity of machine instructions

× Loosely typed registers

× Obscure structure of the program

× Obscure structure of data in memory

but more reliable and efficient:

X Compiler independent, does not require compiler certification

X No transfer of properties from source to binaries

X Accounts for compiler optimizations

although

× Architecture-dependent?
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J. Ruiz, H. Cassé, M. De Michiel Infeasible Paths and Loops in Binary Programs



9/25

Introduction: The infeasible path problem
Program and machine representation

Program analysis
Finding infeasible paths

Experiments and conclusions

Working on binary code
Representing the state of the machine
Abstracting program states

Working on binary code

× Architecture-dependent? No!

Translate to and work on semantic instructions
I a RISC-like instruction set of abstract instructions

ADD r1, r3, #1

LDR r3, [r11, #-8]

REV r1, r0

ADD r1, r3, #1

seti t1, 1
add r1, r3, t1

LDR r3, [r11, #-8]

seti t2,−8
add t1, r11, t2

load r3, t1

REV r1, r0

scratch r1
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Representing the state of the machine

A program state is a set of possible maps of each register and
memory cell to 32-bit values:

r0 7→ 0
r1 7→ 1
r2 7→ 22

. . .
r15 7→ −234

. . .
[0x8000] 7→ −1
[0x8004] 7→ 64

. . .

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

r0 7→ 0
r1 7→ 2
r2 7→ 22

. . .
r15 7→ −234

. . .
[0x8000] 7→ −1
[0x8004] 7→ 64

. . .

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

r0 7→ 0
r1 7→ 3
r2 7→ 22

. . .
r15 7→ −234

. . .
[0x8000] 7→ −1
[0x8004] 7→ 64

. . .
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Abstracting program states

We express abstract states in function of an initial program state

Registers

r0 0
r1 2× r∗1
r2 r∗2 + r∗0

. . .
r15 >

Memory

. . .
[0x8000] [0x8000]∗

[0x8004] 64
. . .

Predicates
r1 < 10
r2 = 2.r1

I > represents any value (safe
approximation)

I v∗ is the initial value of v , at
the beginning of the analysis
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Abstracting program states

We express abstract states in function of an initial program state

Abstract states represent the execution of a code segment

They can be composed by
an operator ◦.

P

Q

R

s1

s2

s1 ◦ s2
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CFG nodes are sequences of instructions d ← f (a, b).
For each instruction, we update any state s such that
s(d) = f (s(a), s(b))

Registers

r0 r∗0
r1 r∗1
r2 r∗2
r3 r∗3

. . .

Memory

. . .
[0x8000] [0x8000]∗

[0x8004] [0x8004]∗

. . .

Predicates

>

seti r2, 1 // r2 ← 1

>

add r1, r3, r2 // r1 ← r3 + r2

>

seti r2, 0x8004 // r2 ← 0x8004

>

load r3, r2 // r3 ← [r2]

>

scratch r2 // r2 ← >
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CFG nodes are sequences of instructions d ← f (a, b).
For each instruction, we update any state s such that
s(d) = f (s(a), s(b))
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Duplicate state s in two states, one
for each path :

I s1 is s with the added predicate
r1 ≥ 10

I s2 is s with the added predicate
r1 < 10

s

s2s1

r1 < 10r1 ≥ 10
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On joins

Keep the states from both paths

(sometimes shrink into one to deal
with the complexity)

{s1, s2}

s2s1

J. Ruiz, H. Cassé, M. De Michiel Infeasible Paths and Loops in Binary Programs



16/25

Introduction: The infeasible path problem
Program and machine representation

Program analysis
Finding infeasible paths

Experiments and conclusions

On nodes
On forks
On joins
On function calls
Loops
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I Analyze each function only
once

I On call, compose with the
state(s) issued from the
called function
s =⇒ sf ◦ s
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Loops

I Common point between loop bodies and functions:
they are Single Entry Single Exit (SESE) regions

I Reuse state composability for each loop h:
I process the body of h once, separately, resulting in sh
I it is a function, we can compute (sh)n, the effect of n iterations
I we now know the state of the program for any iteration n
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Loops

Example for a loop h:

sh

r0 r∗0
r1 2
r2 r∗2 + 2
r3 r∗3 / r∗2

(sh)n

r0 r∗0
r1 2
r2 r∗2 + 2n
r3 >

seti r1, 1 // r1 ← 2
add r2, r2, r1 // r2 ← r2 + r1
div r3, r3, r2 // r3 ← r3 / r2
. . .
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SMT solving

Evaluate the satisfiability of a system?

I Straight forward with SMT (SAT Modulo
Theory) solvers

I Two possible answers:
I “SAT” ⇒ the path represented by the

state is feasible
I “UNSAT” ⇒ the path represented by

the state is infeasible
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Tightening the WCET estimation

I WCET estimation computed by a system linear constraints

“ILP system”

I inject infeasible paths as additional data flow constraints

I WCET estimation may be reduced (if the path of the WCET
was infeasible)
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Conclusion

I Results are very variable and unpredictable
I improvement is often negligible (< 0.1%)
I but sometimes important (10− 40%)

I Precise abstraction of the program is important
I Analysis scales reasonably

I Limiting SMT calls is key
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