
1/25

Introduction: The infeasible path problem
Program and machine representation

Program analysis
Finding infeasible paths

Experiments and conclusions

Working around Loops for Infeasible Path
Detection in Binary Programs

J. Ruiz, H. Cassé, M. De Michiel

IRIT - University Toulouse III, France

September 17, 2017

J. Ruiz, H. Cassé, M. De Michiel Infeasible Paths and Loops in Binary Programs



2/25

Introduction: The infeasible path problem
Program and machine representation

Program analysis
Finding infeasible paths

Experiments and conclusions

Outline

Introduction: The infeasible path problem

Program and machine representation

Program analysis

Finding infeasible paths

Experiments and conclusions

J. Ruiz, H. Cassé, M. De Michiel Infeasible Paths and Loops in Binary Programs



3/25

Introduction: The infeasible path problem
Program and machine representation

Program analysis
Finding infeasible paths

Experiments and conclusions

WCET
Infeasible paths

Introduction: The infeasible path problem

J. Ruiz, H. Cassé, M. De Michiel Infeasible Paths and Loops in Binary Programs



4/25

Introduction: The infeasible path problem
Program and machine representation

Program analysis
Finding infeasible paths

Experiments and conclusions

WCET
Infeasible paths

WCET: Worst Case Execution Time

I WCET analysis gives a safe upper bound of the execution
time of a critical system

J. Ruiz, H. Cassé, M. De Michiel Infeasible Paths and Loops in Binary Programs



4/25

Introduction: The infeasible path problem
Program and machine representation

Program analysis
Finding infeasible paths

Experiments and conclusions

WCET
Infeasible paths

WCET: Worst Case Execution Time

I WCET analysis gives a safe upper bound of the execution
time of a critical system

J. Ruiz, H. Cassé, M. De Michiel Infeasible Paths and Loops in Binary Programs



4/25

Introduction: The infeasible path problem
Program and machine representation

Program analysis
Finding infeasible paths

Experiments and conclusions

WCET
Infeasible paths

WCET: Worst Case Execution Time

I WCET analysis gives a safe upper bound of the execution
time of a critical system

J. Ruiz, H. Cassé, M. De Michiel Infeasible Paths and Loops in Binary Programs



5/25

Introduction: The infeasible path problem
Program and machine representation

Program analysis
Finding infeasible paths

Experiments and conclusions

WCET
Infeasible paths

Infeasible paths

Infeasible paths: A major source of pessimism

I Path 1 → 2 → 3 → 4 is semantically
impossible (= infeasible)

I But taken in account in WCET estimation!

I If path is expensive: worsen WCET precision
(+ pessimism)

J. Ruiz, H. Cassé, M. De Michiel Infeasible Paths and Loops in Binary Programs



5/25

Introduction: The infeasible path problem
Program and machine representation

Program analysis
Finding infeasible paths

Experiments and conclusions

WCET
Infeasible paths

Infeasible paths

Infeasible paths: A major source of pessimism

I Path 1 → 2 → 3 → 4 is semantically
impossible (= infeasible)

I But taken in account in WCET estimation!

I If path is expensive: worsen WCET precision
(+ pessimism)

J. Ruiz, H. Cassé, M. De Michiel Infeasible Paths and Loops in Binary Programs



6/25

Introduction: The infeasible path problem
Program and machine representation

Program analysis
Finding infeasible paths

Experiments and conclusions

WCET
Infeasible paths

Infeasible paths

Solution: detect infeasible paths

J. Ruiz, H. Cassé, M. De Michiel Infeasible Paths and Loops in Binary Programs



7/25

Introduction: The infeasible path problem
Program and machine representation

Program analysis
Finding infeasible paths

Experiments and conclusions

Working on binary code
Representing the state of the machine
Abstracting program states

Program and machine representation

J. Ruiz, H. Cassé, M. De Michiel Infeasible Paths and Loops in Binary Programs



8/25

Introduction: The infeasible path problem
Program and machine representation

Program analysis
Finding infeasible paths

Experiments and conclusions

Working on binary code
Representing the state of the machine
Abstracting program states

Working on binary code

Analyzing binary code is harder :

× Low expressivity of machine instructions

× Loosely typed registers

× Obscure structure of the program

× Obscure structure of data in memory

but more reliable and efficient:

X Compiler independent, does not require compiler certification

X No transfer of properties from source to binaries

X Accounts for compiler optimizations

although

× Architecture-dependent?

J. Ruiz, H. Cassé, M. De Michiel Infeasible Paths and Loops in Binary Programs



8/25

Introduction: The infeasible path problem
Program and machine representation

Program analysis
Finding infeasible paths

Experiments and conclusions

Working on binary code
Representing the state of the machine
Abstracting program states

Working on binary code

Analyzing binary code is harder :

× Low expressivity of machine instructions

× Loosely typed registers

× Obscure structure of the program

× Obscure structure of data in memory

but more reliable and efficient:

X Compiler independent, does not require compiler certification

X No transfer of properties from source to binaries

X Accounts for compiler optimizations

although

× Architecture-dependent?

J. Ruiz, H. Cassé, M. De Michiel Infeasible Paths and Loops in Binary Programs



8/25

Introduction: The infeasible path problem
Program and machine representation

Program analysis
Finding infeasible paths

Experiments and conclusions

Working on binary code
Representing the state of the machine
Abstracting program states

Working on binary code

Analyzing binary code is harder :

× Low expressivity of machine instructions

× Loosely typed registers

× Obscure structure of the program

× Obscure structure of data in memory

but more reliable and efficient:

X Compiler independent, does not require compiler certification

X No transfer of properties from source to binaries

X Accounts for compiler optimizations

although

× Architecture-dependent?

J. Ruiz, H. Cassé, M. De Michiel Infeasible Paths and Loops in Binary Programs



9/25

Introduction: The infeasible path problem
Program and machine representation

Program analysis
Finding infeasible paths

Experiments and conclusions

Working on binary code
Representing the state of the machine
Abstracting program states

Working on binary code

× Architecture-dependent? No!

Translate to and work on semantic instructions
I a RISC-like instruction set of abstract instructions

ADD r1, r3, #1

LDR r3, [r11, #-8]

REV r1, r0

ADD r1, r3, #1

seti t1, 1
add r1, r3, t1

LDR r3, [r11, #-8]

seti t2,−8
add t1, r11, t2

load r3, t1

REV r1, r0

scratch r1

J. Ruiz, H. Cassé, M. De Michiel Infeasible Paths and Loops in Binary Programs



10/25

Introduction: The infeasible path problem
Program and machine representation

Program analysis
Finding infeasible paths

Experiments and conclusions

Working on binary code
Representing the state of the machine
Abstracting program states

Representing the state of the machine

A program state is a set of possible maps of each register and
memory cell to 32-bit values:

r0 7→ 0
r1 7→ 1
r2 7→ 22

. . .
r15 7→ −234

. . .
[0x8000] 7→ −1
[0x8004] 7→ 64

. . .

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

r0 7→ 0
r1 7→ 2
r2 7→ 22

. . .
r15 7→ −234

. . .
[0x8000] 7→ −1
[0x8004] 7→ 64

. . .

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

r0 7→ 0
r1 7→ 3
r2 7→ 22

. . .
r15 7→ −234

. . .
[0x8000] 7→ −1
[0x8004] 7→ 64

. . .

J. Ruiz, H. Cassé, M. De Michiel Infeasible Paths and Loops in Binary Programs



11/25

Introduction: The infeasible path problem
Program and machine representation

Program analysis
Finding infeasible paths

Experiments and conclusions

Working on binary code
Representing the state of the machine
Abstracting program states

Abstracting program states

We express abstract states in function of an initial program state

Registers

r0 0
r1 2× r∗1
r2 r∗2 + r∗0

. . .
r15 >

Memory

. . .
[0x8000] [0x8000]∗

[0x8004] 64
. . .

Predicates
r1 < 10
r2 = 2.r1

I > represents any value (safe
approximation)

I v∗ is the initial value of v , at
the beginning of the analysis

J. Ruiz, H. Cassé, M. De Michiel Infeasible Paths and Loops in Binary Programs



11/25

Introduction: The infeasible path problem
Program and machine representation

Program analysis
Finding infeasible paths

Experiments and conclusions

Working on binary code
Representing the state of the machine
Abstracting program states

Abstracting program states

We express abstract states in function of an initial program state

Abstract states represent the execution of a code segment

They can be composed by
an operator ◦.

P

Q

R

s1

s2

s1 ◦ s2

J. Ruiz, H. Cassé, M. De Michiel Infeasible Paths and Loops in Binary Programs



12/25

Introduction: The infeasible path problem
Program and machine representation

Program analysis
Finding infeasible paths

Experiments and conclusions

On nodes
On forks
On joins
On function calls
Loops

Program analysis

J. Ruiz, H. Cassé, M. De Michiel Infeasible Paths and Loops in Binary Programs



13/25

Introduction: The infeasible path problem
Program and machine representation

Program analysis
Finding infeasible paths

Experiments and conclusions

On nodes
On forks
On joins
On function calls
Loops

On nodes

CFG nodes are sequences of instructions d ← f (a, b).
For each instruction, we update any state s such that
s(d) = f (s(a), s(b))

Registers

r0 r∗0
r1 r∗1
r2 r∗2
r3 r∗3

. . .

Memory

. . .
[0x8000] [0x8000]∗

[0x8004] [0x8004]∗

. . .

Predicates

>

seti r2, 1 // r2 ← 1

>

add r1, r3, r2 // r1 ← r3 + r2

>

seti r2, 0x8004 // r2 ← 0x8004

>

load r3, r2 // r3 ← [r2]

>

scratch r2 // r2 ← >

J. Ruiz, H. Cassé, M. De Michiel Infeasible Paths and Loops in Binary Programs



13/25

Introduction: The infeasible path problem
Program and machine representation

Program analysis
Finding infeasible paths

Experiments and conclusions

On nodes
On forks
On joins
On function calls
Loops

On nodes

CFG nodes are sequences of instructions d ← f (a, b).
For each instruction, we update any state s such that
s(d) = f (s(a), s(b))

Registers

r0 r∗0
r1 r∗1
r2 1
r3 r∗3

. . .

Memory

. . .
[0x8000] [0x8000]∗

[0x8004] [0x8004]∗

. . .

Predicates

> seti r2, 1 // r2 ← 1

>

add r1, r3, r2 // r1 ← r3 + r2

>

seti r2, 0x8004 // r2 ← 0x8004

>

load r3, r2 // r3 ← [r2]

>

scratch r2 // r2 ← >

J. Ruiz, H. Cassé, M. De Michiel Infeasible Paths and Loops in Binary Programs



13/25

Introduction: The infeasible path problem
Program and machine representation

Program analysis
Finding infeasible paths

Experiments and conclusions

On nodes
On forks
On joins
On function calls
Loops

On nodes

CFG nodes are sequences of instructions d ← f (a, b).
For each instruction, we update any state s such that
s(d) = f (s(a), s(b))

Registers

r0 r∗0
r1 r∗3 + 1
r2 1
r3 r∗3

. . .

Memory

. . .
[0x8000] [0x8000]∗

[0x8004] [0x8004]∗

. . .

Predicates

>

seti r2, 1 // r2 ← 1
> add r1, r3, r2 // r1 ← r3 + r2

>

seti r2, 0x8004 // r2 ← 0x8004

>

load r3, r2 // r3 ← [r2]

>

scratch r2 // r2 ← >

J. Ruiz, H. Cassé, M. De Michiel Infeasible Paths and Loops in Binary Programs



13/25

Introduction: The infeasible path problem
Program and machine representation

Program analysis
Finding infeasible paths

Experiments and conclusions

On nodes
On forks
On joins
On function calls
Loops

On nodes

CFG nodes are sequences of instructions d ← f (a, b).
For each instruction, we update any state s such that
s(d) = f (s(a), s(b))

Registers

r0 r∗0
r1 r∗3 + 1
r2 0x8004

r3 r∗3
. . .

Memory

. . .
[0x8000] [0x8000]∗

[0x8004] [0x8004]∗

. . .

Predicates

>

seti r2, 1 // r2 ← 1

>

add r1, r3, r2 // r1 ← r3 + r2
> seti r2, 0x8004 // r2 ← 0x8004

>

load r3, r2 // r3 ← [r2]

>

scratch r2 // r2 ← >

J. Ruiz, H. Cassé, M. De Michiel Infeasible Paths and Loops in Binary Programs



13/25

Introduction: The infeasible path problem
Program and machine representation

Program analysis
Finding infeasible paths

Experiments and conclusions

On nodes
On forks
On joins
On function calls
Loops

On nodes

CFG nodes are sequences of instructions d ← f (a, b).
For each instruction, we update any state s such that
s(d) = f (s(a), s(b))

Registers

r0 r∗0
r1 r∗3 + 1
r2 0x8004

r3 [0x8004]∗

. . .

Memory

. . .
[0x8000] [0x8000]∗

[0x8004] [0x8004]∗

. . .

Predicates

>

seti r2, 1 // r2 ← 1

>

add r1, r3, r2 // r1 ← r3 + r2

>

seti r2, 0x8004 // r2 ← 0x8004

> load r3, r2 // r3 ← [r2]

>

scratch r2 // r2 ← >

J. Ruiz, H. Cassé, M. De Michiel Infeasible Paths and Loops in Binary Programs



13/25

Introduction: The infeasible path problem
Program and machine representation

Program analysis
Finding infeasible paths

Experiments and conclusions

On nodes
On forks
On joins
On function calls
Loops

On nodes

CFG nodes are sequences of instructions d ← f (a, b).
For each instruction, we update any state s such that
s(d) = f (s(a), s(b))

Registers

r0 r∗0
r1 r∗3 + 1
r2 >
r3 [0x8004]∗

. . .

Memory

. . .
[0x8000] [0x8000]∗

[0x8004] [0x8004]∗

. . .

Predicates

>

seti r2, 1 // r2 ← 1

>

add r1, r3, r2 // r1 ← r3 + r2

>

seti r2, 0x8004 // r2 ← 0x8004

>

load r3, r2 // r3 ← [r2]
> scratch r2 // r2 ← >

J. Ruiz, H. Cassé, M. De Michiel Infeasible Paths and Loops in Binary Programs



14/25

Introduction: The infeasible path problem
Program and machine representation

Program analysis
Finding infeasible paths

Experiments and conclusions

On nodes
On forks
On joins
On function calls
Loops

On forks

Duplicate state s in two states, one
for each path :

I s1 is s with the added predicate
r1 ≥ 10

I s2 is s with the added predicate
r1 < 10

s

s2s1

r1 < 10r1 ≥ 10

J. Ruiz, H. Cassé, M. De Michiel Infeasible Paths and Loops in Binary Programs



15/25

Introduction: The infeasible path problem
Program and machine representation

Program analysis
Finding infeasible paths

Experiments and conclusions

On nodes
On forks
On joins
On function calls
Loops

On joins

Keep the states from both paths

(sometimes shrink into one to deal
with the complexity)

{s1, s2}

s2s1

J. Ruiz, H. Cassé, M. De Michiel Infeasible Paths and Loops in Binary Programs



16/25

Introduction: The infeasible path problem
Program and machine representation

Program analysis
Finding infeasible paths

Experiments and conclusions

On nodes
On forks
On joins
On function calls
Loops

On function calls

I Analyze each function only
once

I On call, compose with the
state(s) issued from the
called function
s =⇒ sf ◦ s

J. Ruiz, H. Cassé, M. De Michiel Infeasible Paths and Loops in Binary Programs



16/25

Introduction: The infeasible path problem
Program and machine representation

Program analysis
Finding infeasible paths

Experiments and conclusions

On nodes
On forks
On joins
On function calls
Loops

On function calls

I Analyze each function only
once

I On call, compose with the
state(s) issued from the
called function
s =⇒ sf ◦ s

J. Ruiz, H. Cassé, M. De Michiel Infeasible Paths and Loops in Binary Programs



17/25

Introduction: The infeasible path problem
Program and machine representation

Program analysis
Finding infeasible paths

Experiments and conclusions

On nodes
On forks
On joins
On function calls
Loops

Loops

I Common point between loop bodies and functions:
they are Single Entry Single Exit (SESE) regions

I Reuse state composability for each loop h:
I process the body of h once, separately, resulting in sh
I it is a function, we can compute (sh)n, the effect of n iterations
I we now know the state of the program for any iteration n

J. Ruiz, H. Cassé, M. De Michiel Infeasible Paths and Loops in Binary Programs



18/25

Introduction: The infeasible path problem
Program and machine representation

Program analysis
Finding infeasible paths

Experiments and conclusions

On nodes
On forks
On joins
On function calls
Loops

Loops

Example for a loop h:

sh

r0 r∗0
r1 2
r2 r∗2 + 2
r3 r∗3 / r∗2

(sh)n

r0 r∗0
r1 2
r2 r∗2 + 2n
r3 >

seti r1, 1 // r1 ← 2
add r2, r2, r1 // r2 ← r2 + r1
div r3, r3, r2 // r3 ← r3 / r2
. . .

J. Ruiz, H. Cassé, M. De Michiel Infeasible Paths and Loops in Binary Programs



19/25

Introduction: The infeasible path problem
Program and machine representation

Program analysis
Finding infeasible paths

Experiments and conclusions

SMT solving
Tightening the WCET estimation

Finding infeasible paths

J. Ruiz, H. Cassé, M. De Michiel Infeasible Paths and Loops in Binary Programs



20/25

Introduction: The infeasible path problem
Program and machine representation

Program analysis
Finding infeasible paths

Experiments and conclusions

SMT solving
Tightening the WCET estimation

SMT solving

Evaluate the satisfiability of a system?

I Straight forward with SMT (SAT Modulo
Theory) solvers

I Two possible answers:
I “SAT” ⇒ the path represented by the

state is feasible
I “UNSAT” ⇒ the path represented by

the state is infeasible

J. Ruiz, H. Cassé, M. De Michiel Infeasible Paths and Loops in Binary Programs



21/25

Introduction: The infeasible path problem
Program and machine representation

Program analysis
Finding infeasible paths

Experiments and conclusions

SMT solving
Tightening the WCET estimation

Tightening the WCET estimation

I WCET estimation computed by a system linear constraints

“ILP system”

I inject infeasible paths as additional data flow constraints

I WCET estimation may be reduced (if the path of the WCET
was infeasible)

J. Ruiz, H. Cassé, M. De Michiel Infeasible Paths and Loops in Binary Programs



22/25

Introduction: The infeasible path problem
Program and machine representation

Program analysis
Finding infeasible paths

Experiments and conclusions

Experimental results: Infeasible paths
Experimental results: WCET gain
Conclusion

Experiments and conclusions

J. Ruiz, H. Cassé, M. De Michiel Infeasible Paths and Loops in Binary Programs



23/25

Introduction: The infeasible path problem
Program and machine representation

Program analysis
Finding infeasible paths

Experiments and conclusions

Experimental results: Infeasible paths
Experimental results: WCET gain
Conclusion

Experimental results: Infeasible paths

Mälardalen Debie, PapaBench

J. Ruiz, H. Cassé, M. De Michiel Infeasible Paths and Loops in Binary Programs



24/25

Introduction: The infeasible path problem
Program and machine representation

Program analysis
Finding infeasible paths

Experiments and conclusions

Experimental results: Infeasible paths
Experimental results: WCET gain
Conclusion

Experimental results: WCET gain

Mälardalen Debie, PapaBench

J. Ruiz, H. Cassé, M. De Michiel Infeasible Paths and Loops in Binary Programs



25/25

Introduction: The infeasible path problem
Program and machine representation

Program analysis
Finding infeasible paths

Experiments and conclusions

Experimental results: Infeasible paths
Experimental results: WCET gain
Conclusion

Conclusion

I Results are very variable and unpredictable
I improvement is often negligible (< 0.1%)
I but sometimes important (10− 40%)

I Precise abstraction of the program is important
I Analysis scales reasonably

I Limiting SMT calls is key

J. Ruiz, H. Cassé, M. De Michiel Infeasible Paths and Loops in Binary Programs


	Introduction: The infeasible path problem
	WCET
	Infeasible paths

	Program and machine representation
	Working on binary code
	Representing the state of the machine
	Abstracting program states

	Program analysis
	On nodes
	On forks
	On joins
	On function calls
	Loops

	Finding infeasible paths
	SMT solving
	Tightening the WCET estimation

	Experiments and conclusions
	Experimental results: Infeasible paths
	Experimental results: WCET gain
	Conclusion


